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Abstract

This paper shows that health insurers can shape the way in which health care
is provided to patients beyond the financial characteristics of their contracts
by engaging in gatekeeping practices. Using the discontinuity in cost-sharing
introduced by the out-of-pocket maximum, I identify effects consistent with
insurer gatekeeping even in the presence of information frictions. I find that
gatekeeping significantly reduces health care utilization and spending, without
effects on individual mortality. Estimates from a structural model of hospi-
tal demand indicate that gatekeeping induces patients to travel 1.8 additional
kilometers to receive care, while information frictions have negligible effects on
consumers’ choices.
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1 Introduction

Substantial research in health economics has found evidence that individuals respond

to the financial characteristics of their health insurance contracts, such as cost-sharing

and coverage (Serna, 2021; Aron-Dine et al., 2013; Eichner, 1998; Newhouse, 1993;

Manning et al., 1987). Empirical evidence has also shown that access to health insur-

ance has small impacts on patient health outcomes for certain populations (Finkelstein

and McKnight, 2008) and that there are determinants of patient health that are not

tied to insurance provision (Finkelstein et al., 2021). Together this evidence seems to

point to health insurers only as financial intermediaries between patients and health

care providers, analogous to insurance companies in other markets such as car and

life insurance. But can health insurers shape the way in which healthcare is provided

to consumers unlike these other insurance markets?

This paper explores the role of insurers as health care gatekeepers. Insurers can

affect the provision of health care by gatekeeping patients from certain providers –

using narrow networks (Ho and Lee, 2017; Buitrago et al., 2024) or prior authorization

(Brot-Goldberg et al., 2017)– and certain types of claims –using claim denials (League,

2023).1 I show that insurer gatekeeping is a much more effective cost-containment

mechanism than patient cost-sharing, and that it does not undermine patient health.

I study the effects of gatekeeping on utilization, spending, and where consumers

go to seek care in the context of Colombia’s contributory health care system. This

health system covers individuals who pay payroll taxes and provides access to the na-

tional health insurance plan. The government strictly regulates several aspects of this

plan including premiums and cost-sharing. Cost-sharing rules (copays, coinsurance

rates, and maximum out-of-pocket (OOP) amounts in the year) are a function of the
1Holmes et al. (2024) also show that health insurers can shape productivity and innovation in

healthcare.
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enrollee’s monthly income level but are standardized across insurers and hospitals.

To identify gatekeeping I leverage the discontinuity in coinsurance rates introduced

by the OOP maximum. Coinsurance rates drop to zero after patients reach this limit

and the insurer has to cover the full cost of care. Gatekeeping incentives are therefore

more salient after patients reach this limit. I show that reaching the OOP maximum

in my setting is a random and sudden event, typically a hospitalization, and that

individuals cannot preempt it. This provides a unique setting to estimate the causal

effect of insurer gatekeeping on different outcomes. To do so, I use enrollment and

health claims data from a random panel of 8 million enrollees from 2009 to 2011, who

did not switch their insurer over the sample period.

I start by comparing claim prices and likelihood of making claims between indi-

viduals who reach their OOP maximum and those who don’t, in a dynamic difference-

in-differences design. Treated individuals consume significantly cheaper services and

have a substantially lower likelihood of making claims than controls after reaching the

OOP maximum. These findings are at odds with behavioral assumptions about con-

sumers when they face zero prices and are also inconsistent with individuals’ health

status worsening due to sudden health shocks as hospitalizations. Instead, results

are in line with insurers gatekeeping claims and with information frictions that make

consumers unaware of zero prices.

To separate the effect of information frictions from gatekeeping, I estimate my

event study specification separately for cohorts of patients that reach their OOP

maximum in different months of the year. If information frictions disappear over

time, then cohorts who reach their maximum early on should consume more expen-

sive services the closer they are to the end of the calendar year before cost-sharing

resets. My findings show no evidence that negative treatment effects vanish for any

cohort. Reductions in claim prices and likelihood of making claims are both persis-
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tent, suggesting that information frictions are not the main driver of reductions in

spending.

Event study results conform to the idea that insurer gatekeeping is an important

source of responsiveness to prices. I show that insurers are less likely to gatekeep

claims made in an inpatient setting, but are more likely to gatekeep discretionary

care made in an outpatient setting, such as imaging and laboratory tests. Because

gatekeeping may involve steering patients towards cheaper providers or denying claims

altogether, its use raises questions about the impact on patient health. Using a

regression discontinuity framework around the patient’s OOP spending relative to

their OOP maximum, I find no change in individual mortality after reaching the

OOP maximum.

In the last part of the paper I turn to examining the impacts of gatekeeping and

information frictions on the types of providers that consumers choose to receive care.

I develop and estimate a structural model of hospital demand that incorporates infor-

mation frictions, and consumers’ and insurers’ responsiveness to prices in two states

of the world: before and after patients reach their OOP maximum. The structural

model allows me, for example, to derive changes in the marginal disutility of distance

that are due to insurer gatekeeping and information frictions.

My model estimates show significant responsiveness to prices before and after pa-

tients reach their OOP maximum, in line with the reduced-form evidence. Estimates

show that consumers dislike commuting to visit health care providers. In a partial

equilibrium exercise where I prohibit insurer gatekeeping, I find that patients on av-

erage would be willing to pay 10 percent more than in the observed scenario to reduce

commuting distance by 1 kilometer. Put differently, gatekeeping induces individuals

to travel on average 1.8 additional kilometers to receive care. Unlike gatekeeping,

information frictions have negligible effects on consumers’ choices.
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Related literature. This paper contributes to the literature on the use of non-

price mechanisms to contain health care costs and unnecessary spending, such as

spending monitoring programs (Shi, 2024), prior authorization (Roberts et al., 2021;

Brot-Goldberg et al., 2023), and claim denials (Gottlieb et al., 2018; League, 2023;

Dunn et al., 2024). I add to this literature by quantifying the overall effects of insurer

gatekeeping on utilization, spending, mortality, and provider choice.

By demonstrating that gatekeeping is much more effective than cost-sharing at

containing spending and that it does not necessarily hurt patient health, I build on

prior empirical work finding mixed evidence of patient cost-sharing being effective

at these fronts (Chandra et al., 2010; Shigeoka, 2014; Chandra et al., 2014; Baicker

et al., 2015; Brot-Goldberg et al., 2017; Chandra et al., 2021; Buitrago et al., 2021).

Specifically, I complement prior work describing what happens when health care prices

are zero (Chandra et al., 2010; Dague, 2014; Drake et al., 2023). For example, Iizuka

and Shigeoka (2022) show that health care demand increases discontinuously when

prices are zero in line with behavioral moral hazard. My findings in the Colombian

setting show reductions in demand after prices become zero that are incompatible

with consumers’ behavioral responses.

Finally, my paper is also related to the literature quantifying the relative costs of

information frictions in healthcare, of which Handel et al. (2019); Brown (2019) are

a few examples of how these frictions impact health insurance pricing and Handel

and Kolstad (2015) of how they impact insurance choices. In my setting, I find that

information frictions have negligible impacts on which providers consumers choose,

hence policies targeted at information provision maybe ineffective at improving the

match between patients and providers. Similar findings have been reported in Alpert

et al. (2024) in the context of opioid prescriptions.

The remainder of this paper is structured as follows: section 2 describes the
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empirical setting, section 3 describes my data, section 4 provides the designed-based

empirical analysis to identify gatekeeping, section 5 presents the structural model of

hospital demand, section 6 presents results from the partial equilibrium analyses, and

section 7 concludes.

2 Cost-Sharing in Colombia

The Colombian health care system was established in 1993. It is divided into a

contributory regime and a subsidized regime. The first covers individuals who are

employed or self-employed and can pay their taxes. The second covers individuals

who are poor enough to qualify and it is fully funded by the government through tax

revenue. In both regimes enrollees have access to a national health insurance plan

that is provided by private insurers.

The government regulates several aspects of the national plan: insurance premi-

ums are set to zero in both regimes, individuals in the contributory system have to

pay a fraction of their health care expenditures through cost-sharing, and health care

is free in the subsidized system. Insurers have no discretion on how to design these

elements of the insurance plan, but they can decide on their network of preferred

providers and negotiate health service prices with them.

Table 1: Cost-Sharing Rules in the Contributory Health Care System

Income level y Copay Coinsurance rate OOP Maximum

Per claim Per claim Per year

Low: y < 2 MMW 1,900 11.5% 28.7% 57.5%
Middle: y ∈ [2, 5] MMW 7,600 17.3% 115% 230%
High: y > 5 MMW 20,100 23.0% 230% 460%

Note: Table shows the copays, coinsurance rates, and OOP maximum per income level that apply to individuals
enrolled in Colombia’s contributory health care system. The monthly minimum wage (MMW) in 2009 equals 496,900
COP or roughly 231 USD. The coinsurance rates are percentages of claims cost, whereas the OOP maximums are
percentages of the MMW.
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Cost-sharing rules in the contributory system are a function of the enrollee’s

monthly income level but are standardized across insurers and hospitals. These rules

involve a three-tier system of copayments, coinsurance rates, and maximum out-of-

pocket (OOP) amounts in the year as seen in table 1. Individuals are assigned specific

cost-sharing rules depending on whether they make less than 2, between 2 and 5, or

more than 5 times the monthly minimum wage (MMW). For example, for individuals

who make less than 2 times the MMW, the copay equals 1,900 pesos (nearly $1),

the coinsurance rate is 11.5 percent of the price per health claim, and the maximum

OOP amount is 28.7 percent of the MMW per health claim and 57.5 percent of the

MMW per year. Enrollees make copayments every time they go to a primary care

doctor or a specialist and they pay coinsurance rates for every health service that

they claim. After individuals reach their OOP maximum in the year, copays and

coinsurance rates drop to zero and the insurer covers the full cost of their health care.

These cost-sharing rules have not changed since the establishment of the health

care system and vary only with the monthly minimum wage and with inflation. Pre-

vious studies have analyzed the impacts of coinsurance rate discontinuities in the

Colombian health care system on utilization, spending, and health outcomes (Serna,

2021; Buitrago et al., 2021). These studies leverage comparisons across consumers in

the different income tiers. Instead, in this paper I study within-patient changes in

outcomes before and after they reach their OOP maximum to identify insurer gate-

keeping from other sources of price variation (or lack thereof) such as information

frictions.

Insurer gatekeeping refers to mechanisms by which the insurer deters, denies, or

steers health claims made by its enrollees in order to control costs or risk select.

These mechanisms may include requiring prior authorization or having long lines to

file claims or get medications. This differs from other definitions where primary care
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providers or general practitioners serve as gatekeepers by deciding whether to refer a

patient for more specialized care as in the UK.

3 Data and Descriptives

My data consist of all the health claims of a random sample of nearly 8 million en-

rollees in Colombia’s contributory system from 2009 to 2011 who made at least one

claim and who did not switch their insurer during the sample period. For every indi-

vidual I observe basic socio-demographic characteristics including sex, age, income,

and municipality of residence. The data reports insurer, provider, service, ICD-10

code, type of contract, and negotiated price associated with each health claim. Using

the enrollee’s income I recover their level of cost-sharing and the OOP maximum that

applies to each of them. With the health claims data I construct different measures of

monthly utilization and spending and determine whether and when they reach their

OOP maximum.

I consider observations from one individual in different years as different individu-

als because cost-sharing resets at the beginning of each calendar year. Hence, we can

expect consumer and insurer behavior relative to the cost-sharing rules to be similar

across years. This assumption implies that I consider my data as repeated cross-

sections, and exploit the variation within years. For tractability, I choose a random

sample of 200,000 individuals per year.

Table 2 presents some summary statistics of my sample. An observation is an

individual. Column (1) shows descriptives for the full sample, column (2) for the

sample of people who reach their OOP maximum in the year, and column (3) for the

sample of people who do not reach their OOP maximum. 3 percent of individuals

in my sample reach their OOP limit. These individuals are on average older and of
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Table 2: Summary Statistics

Full sample Above OOP max Below OOP max
(1) (2) (3)

Socio-demographic
Male 0.48 (0.50) 0.46 (0.50) 0.48 (0.50)
Age 46.9 (17.0) 58.4 (18.1) 46.6 (16.9)
Low income 0.75 (0.43) 0.92 (0.26) 0.75 (0.43)
Medium income 0.19 (0.39) 0.06 (0.25) 0.19 (0.39)
High income 0.06 (0.23) 0.01 (0.10) 0.06 (0.23)

Health
Cancer 0.17 (0.37) 0.30 (0.46) 0.17 (0.37)
Cardiovascular 0.32 (0.47) 0.64 (0.48) 0.31 (0.46)
Pulmonary 0.05 (0.21) 0.18 (0.39) 0.04 (0.20)
Renal 0.03 (0.17) 0.13 (0.34) 0.03 (0.17)

Health care use
Mean claim price 12.9 (54.0) 135 (298) 9.71 (16.0)
Total monthly cost 44.5 (175) 645 (866) 28.7 (44.6)
Prescription claims 0.26 (0.93) 1.15 (2.92) 0.23 (0.80)
Outpatient claims 1.13 (1.52) 3.66 (3.70) 1.06 (1.36)
Hospitalization 0.01 (0.03) 0.07 (0.08) 0.00 (0.02)

Observations 600,000 15,393 584,607

Note: Mean and standard deviation in parenthesis of consumer characteristics in the full sample in column (1), in
the sample of those who reach their OOP maximum in column (2), and in the sample of those who do not reach
their OOP maximum in column (3). An observation is an individual. Cost and price variables are measured in
thousands of pesos.

lower income than those who do not reach the limit. 64 percent of those in column (2)

have a cardiovascular disease (such as hypertension), while only 31 percent of those

in column (3) have this type of diagnosis. Consumers who reach their maximum have

higher health care utilization than their counterparts, a difference that is driven only

by the health claim made when they reach this maximum. For example, the mean

claim price is over 10 times higher and the likelihood of being hospitalized in a month

is 7 percentage points higher for those in column (2) relative to column (3).

Reaching the OOP maximum is a sudden event in my setting. Panel A of figure 1

shows that cumulative monthly spending increases smoothly until the month before

reaching the OOP maximum and has a sharp discontinuity when this maximum is
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reached. This sudden event is typically a hospitalization as seen in panel B of the

figure. A little under 50 percent of individuals who reach the OOP maximum have

a hospitalization and the remaining half either claim an expensive imaging service or

an expensive visit to the specialist as seen in appendix figure 1.

Figure 1: Cumulative spending and hospitalizations by month
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Note: Figure shows average cumulative monthly spending in panel A and average number of hospitalizations in panel
B by month relative to the month in which the individuals reaches her OOP maximum.

4 Identifying Gatekeeping

To identify insurer gatekeeping, I leverage exogenous variation in health care demand

introduced by discontinuities in patient cost-sharing rules. I focus on the sample of

individuals who reach their OOP maximum and face zero prices. Relative to individ-

uals who pay a fraction of their health care cost through cost-sharing, gatekeeping

incentives should be stronger among the group of patients who have their insurer

cover the cost of care completely.

The empirical strategy of using individuals who face zero prices to identify the

magnitude of gatekeeping has several identification threats. The first is a selection

bias problem: people who reach their OOP maximum may be unobservably sicker

and less responsive to prices compared to those who don’t reach it. This type of un-
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observed heterogeneity might lead a researcher to underestimate the effects of insurer

gatekeeping. The second is a confounding bias problem: changes in demand when

individuals face zero prices may come from patients facing choice frictions, patients’

health status worsening over time, or insurers steering patients towards cheaper care.

These types of unobserved confounders might lead a researcher to overestimate the

effects of gatekeeping.

I start by exploring the first source of bias to determine whether selection into

reaching the OOP maximum is a concern in my setting. The descriptive evidence

showed that reaching the OOP maximum is a sudden event and therefore there are

no reasons to believe that individuals anticipate this event. If this is true, then people

who reach their OOP maximum and those who don’t should have parallel utilization

and spending patterns prior to the event. To characterize these spending patterns

more systematically, I compare people who reach the OOP maximum (treated group)

and those who don’t (control group), before and after they reach the limit in a dynamic

difference-in-differences (did) design.2

The regression specification is as follows:

yit =
8∑

k=−11
k ̸=−1

βk1{t− t∗ = k} × Treatedi + θSit + αi + γt + εit (1)

yit is the outcome of individual i in month t, t∗ is the calendar month in which the

treated individual reaches the OOP maximum; Sit is consumer i’s cumulative out-of-

pocket spending up to month t which, in the style of a regression discontinuity design,

imposes a linear trend on the treatment assignment variable; αi is an individual fixed
2I exclude from my treated sample individuals who reach their OOP maximum during the first

quarter of the year. For these individuals I do not observe pre-event periods and cannot distinguish
whether the health shock is random or whether reaching the OOP maximum was determined by
their utilization or spending prior to the start of my sample period.
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effect and γt is a calendar month fixed effect.3 The coefficients βk measure the average

treatment effect on the treated in month k relative to the month when individuals

reach their OOP limit. For those in the control group, I normalize k = −1. Standard

errors are clustered at the individual level, which defines the level of treatment. I use

Sun and Abraham (2021)’s estimator to deal with possibly heterogeneous dynamic

treatment effects and staggered treatment. Appendix table 2 presents the associ-

ated event study coefficients and standard errors and appendix 3 presents robustness

checks using a two-way fixed effect estimator and De Chaisemartin and d’Haultfoeuille

(2020)’s estimator.

Figure 2: Utilization and spending after reaching the OOP limit

(a) Mean claim price
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Note: Figure shows coefficients and 95 percent confidence intervals of the event study specifications following equation
(2) for the mean claim price in panel A, an indicator for making claims in panel B, log of total spending in panel
C, and log of total claims in panel D. Regression uses Sun and Abraham (2021)’s estimator. Treated individuals are
those who reach their OOP maximum and control individuals are those who do not reach their maximum. Time
indicators relative to reaching the OOP maximum are set to −1 for the control group.

Controlling for cumulative OOP spending. Recent literature on did has

devoted attention to the issues that arise when including time-variant and time-

invariant covariates (e.g., Caetano et al., 2022). If cumulative OOP spending in

my specification is affected by treatment or the true underlying relation between

my outcome and this covariate is non-linear, then estimates for βk will be biased.
3This specification is similar to Colonnelli et al. (2020) who use did event study regressions that

control for the treatment assignment or running variable.
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However, note first that cumulative OOP spending determines treatment, not the

other way around; and second that outcomes such as the mean claim price contribute

linearly to the cumulative OOP spending that is used to determine whether the

patient reaches the OOP maximum.

Figure 2 shows event study coefficients and 95 percent confidence intervals using

as outcomes the mean claim price in panel A and an indicator for making claims

in panel B. I find that trend differences in the mean claim price before the event

between treated and controls are negligible, suggestive of parallel pre-trends. More

importantly, to the extent that this outcome captures changes in health status, ev-

idence of parallel trends before the event indicates limited selection into reaching

the OOP maximum. Although I cannot rule out that treated individuals are on dif-

ferent trends relative to controls for the likelihood of making claims, the fact that

trend differences reverse after reaching the OOP maximum is suggestive of substan-

tial dynamic treatment effects. In fact, appendix figure 3 that uses De Chaisemartin

and d’Haultfoeuille (2020)’s estimator imposing parallel pre-trends, shows even larger

treatment effects on this outcome.

At the time of the event there is a sharp discontinuity in the mean claim price

among people who reach the OOP maximum. These individuals claim services that

are around 600 thousand pesos ($324) more expensive than individuals who do not

reach their limit.4 The differences in mean claim price become negative over time after

reaching the OOP maximum, with treated individuals making claims that are roughly

200 thousand pesos cheaper than controls 3 months after the event. In appendix table

1 I find confirming results of this negative treatment effect exploiting the claims level

data by estimating a did regression of price conditional on service, municipality, and

time fixed effects.
4The average exchange rate for 2011 was 1,847COP/USD.
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While individuals who reach the OOP limit claim relatively cheaper services, their

likelihood of making claims does not increase and, in fact, decreases substantially

after the event as seen in panel B. One month after the event, individuals who reach

the OOP maximum are 5 percentage points (p.p) less likely to make a claim. This

difference increases over time, with treated individuals being 25 p.p less likely to make

claims between 7 to 8 months after reaching the OOP maximum. These results are

robust to excluding individuals who die during the sample period as seen in appendix

table 9.

Figure 3: Utilization and spending by income group

(a) Mean claim price
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Note: Figure shows coefficients and 95 percent confidence intervals of the event study specifications following equation
(2) for the mean claim price in panel A, and an indicator for making claims in panel B. Estimates in black condition on
individuals with incomes above 5 times the monthly minimum wage. Estimates in dark gray condition on individuals
with incomes between 2 and 5 times the monthly minimum wage. Estimates in light gray condition on individual
with income below 2 times the monthly minimum wage. Regression uses Sun and Abraham (2021)’s estimator.
Treated individuals are those who reach their OOP maximum and control individuals are those who do not reach
their maximum. Time indicators relative to reaching the OOP maximum are set to −1 for the control group.

Because cost-sharing rules are indexed to the enrollee’s monthly income, a stacked

did design, as the one in the previous figure, will compare individuals across income

groups for which cumulative OOP spending evolves very differently. This might

explain why for outcomes such as the likelihood of making claims, I do not find

evidence of parallel pre-trends. To account for the way in which cost-sharing rules

are assigned, in figure 3 I replicate my event study specification conditional on each

income group. Appendix tables 3 and 4 report the associated coefficients and standard
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errors. Results for the mean claim price and the likelihood of making claims all exhibit

evidence of parallel trends between treated and control individuals prior to the event.

Reductions in both of these outcomes are robust and monotonic with respect to

income.

4.1 Heterogeneity Analysis

Differences in health care utilization after reaching the OOP maximum are driven by

differences health status. Figure 4 reports did results on individuals who received a

chronic disease diagnosis at any point during the year in black, and conditional on

those who never received a diagnosis in gray. Appendix table 5 presents coefficients

and standard errors.

Results in panel A show that healthy and sick individuals who reach their OOP

maximum have parallel trends in mean claim price relative to controls prior to the

event. Between 1 and 6 months after reaching the OOP limit, healthy consumers

claim cheaper services compared to individuals who do not reach their limit, and

this treatment effect is slightly larger in magnitude than for individuals with chronic

diseases. For instance, 2 months after the event, consumers with chronic diseases

claim services that are on average 19 thousand pesos cheaper than those claimed by

the control group, while healthy consumers claims services that are 25 thousand pesos

cheaper.

Panel B shows that reductions in the probability of making claims are substantial

among both healthy and sick consumers after reaching the OOP maximum. However,

reductions are more than three times larger for the former than for the latter every

month after the event. The fact that health care consumption falls by a greater

magnitude among healthy individuals suggests that it may be easier for insurers to
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gatekeep this type of patient and, more generally, that steering incentives depend on

patients’ health status.

Figure 4: Utilization and spending by health status

(a) Mean claim price
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Note: Figure shows coefficients and 95 percent confidence intervals of the event study specifications following equation
(2) for the mean claim price in panel A, and an indicator for making claims in panel B. Estimates in black condition on
individuals with a chronic disease diagnosis and those in gray condition on individuals without diagnosis. Regression
uses Sun and Abraham (2021)’s estimator. Treated individuals are those who reach their OOP maximum and control
individuals are those who do not reach their maximum. Time indicators relative to reaching the OOP maximum are
set to −1 for the control group.

4.2 Health Services

To provide evidence on the type of care that insurers are more likely to deter or steer,

I estimate event study designs for subsets of health services. Figure 5 presents results

of my event study specification using as outcomes the log of total spending and the

likelihood of making claims for inpatient services in panels A and B, for prescription

medications in panels C and D, and for outpatient care in panels E and F. Appendix

tables 6 and 7 report associated coefficients and standard errors.

Results are suggestive of gatekeeping efforts being present across all types of care

but being smaller in magnitude for acute or necessary care. Reductions in the likeli-

hood of making claims are smaller for inpatient services than for outpatient services

and prescriptions. However, total spending falls by a greater magnitude for the former

because each inpatient claim is more expensive than each outpatient claim.
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Panel A shows that treated individuals see a reduction in spending on inpatient

services equal to 13 percent relative to controls 3 months after reaching the OOP

maximum. The reduction in spending on prescription medications and outpatient

services are equal to 1.5 and 9 percent, respectively, in the same month. Instead,

panel D shows that individuals who reach their OOP maximum are roughly 12 p.p

less likely to make inpatient claims relative to controls 4 months after the event, while

they are almost 20 p.p less likely to make outpatient claims in panel F.

The reduction in the consumption of care that is less acute suggests that, despite

their worsened health and their zero cost-sharing, treated individuals behave as if they

face non-zero prices for outpatient care. Appendix figure 2 reports event study results

for other types of potentially discretionary services such as imaging and laboratory

tests, which are consistent with this hypothesis.

4.3 Zero-Price and Health Shock Effects

The event studies in figure 2 generally suggest that after reaching the OOP maxi-

mum, treated individuals differ systematically from controls. However, this difference

conflates two effects at play: the effect on utilization and spending due to sudden

hospitalizations (“health shock effect”) and the effect due to zero prices. These effects

are highly correlated in the sense that individuals face sudden hospitalizations and

zero prices at the same time.

Since gatekeeping incentives may be different for people who face sudden hospi-

talizations versus those who face zero prices without having a hospitalization, it is

important to disentangle the zero-price effect from the health shock effect. For in-

stance, we might expect an insurer to be more willing to send patients to expensive

providers when it has to cover the full cost of care if the patient is relatively sick
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Figure 5: Utilization and spending by type of care
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(c) Log outpatient cost + 1
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(f) Any outpatient claim
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Note: Figure shows coefficients and 95 percent confidence intervals of the event study specifications following equation
(2) for the log of inpatient cost in panel A, log of prescription cost in panel B, log of outpatient cost in panel C, indicator
for making inpatient claims in panel D, indicator for making prescription claims in panel E, and indicator for making
outpatient claims in panel F. Regressions use Sun and Abraham (2021)’s estimator. Treated individuals are those
who reach their OOP maximum and control individuals are those who do not reach their maximum. Time indicators
relative to reaching the OOP maximum are set to −1 for the control group.

compared to when the patient is relatively healthy.

Let t = 0 denote the period before reaching the OOP maximum and t = 1 the

period after reaching the maximum. Let H(i, t) be an indicator for individual i having

a hospitalization in period t, D(i, t) be the price of health care that individual i faces

in period t, and Y (i, t) be the mean claim cost of individual i in period t. The did

specification using the mean claim price as outcome in figure 2 identifies the average

treatment effect on the treated (ATT) as

β = (E[Y (i, 1)|D(i, 1) = 0]− E[Y (i, 1)|D(i, 1) > 0])

− (E[Y (i, 0)|D(i, 1) = 0]− E[Y (i, 0)|D(i, 1) > 0])
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Underlying this treatment effect is the effect of sudden changes in health status gen-

erated primarily by hospitalizations. Both treated and control units may face hospi-

talizations in the pre- or post-periods. This implies that each element of the previous

equation is a weighted average across hospitalization status. Using this fact, we can

rewrite the ATT as:

β =
(
E[Y (i, 1)|D(i, 1) = 0, H(i, 1) = 0]− E[Y (i, 1)|D(i, 1) > 0, H(i, 1) = 0]

)
−
(
E[Y (i, 0)|D(i, 1) = 0, H(i, 1) = 0]− E[Y (i, 0)|D(i, 1) > 0, H(i, 1) = 0]

)
︸ ︷︷ ︸

Zero-price effect

+ x
(
E[Y (i, 1)|D(i, 1) = 0, H(i, 1) = 1]− E[Y (i, 1)|D(i, 1) = 0, H(i, 1) = 0]

)
− x

(
E[Y (i, 0)|D(i, 1) = 0, H(i, 1) = 1]− E[Y (i, 0)|D(i, 1) = 0, H(i, 1) = 0]

)
︸ ︷︷ ︸

Treated health shock effect

−
(
y
(
E[Y (i, 1)|D(i, 1) > 0, H(i, 1) = 1]− E[Y (i, 1)|D(i, 1) > 0, H(i, 1) = 0]

)
− y

(
E[Y (i, 0)|D(i, 1) > 0, H(i, 1) = 1]− E[Y (i, 0)|D(i, 1) > 0, H(i, 1) = 0]

))
︸ ︷︷ ︸

Control health shock effect

where x = P (H(i, 1) = 1|D(i, 1) = 0) and y = P (H(i, 1) = 1|D(i, 1) > 0). The

expression above shows that the ATT is the sum of the zero-price effect and the

marginal health shock effect on the treated relative to controls.

Results of this decomposition exercise for the mean claim cost are presented figure

6. Appendix table 10 reports associated coefficients and standard errors. Panel A

depicts event study coefficients for the zero-price effect, that is, conditional on people

who never have a hospitalization in the study period. The regression specification in

this case is the same as equation (2).

Panel B depicts event study coefficients for the treated health shock effect, that

is, conditional on individuals who reach the OOP maximum. For this effect, time
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Figure 6: Effect Decomposition

(a) Zero-price effect
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(b) Health shock effect
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Note: Coefficients and 95 percent confidence intervals of the event study specifications for the mean claim price
due to the zero-price effect in panel A and due to the health shock effect in panel B. The zero-price effect uses the
sample of individuals who are never hospitalized during the sample period. The health shock effect uses the sample of
treated individuals comparing those who are hospitalized are those who are not, before and after the hospitalization.
Regression uses Sun and Abraham (2021)’s estimator. Time indicators are constructed relative to reaching the OOP
maximum for the zero-price effect and are relative to the month when the individual is hospitalized for the health
shock effect.

indicators are constructed relative to the month when the individual is hospitalized,

h∗, and are equal to those when the individual reaches the OOP maximum, because

the two events are perfectly correlated in time. Formally, the regression equation for

the health shock effect among those who reach the OOP maximum is:

yit =
8∑

k=−11
k ̸=−1

βk1{t− h∗ = k} × Hospitalizedi + αi + γt + εit (2)

Findings show that when the event occurs, the zero-price effect is 20 thousand

pesos higher than the treated health shock effect. The zero-price effect on the mean

claim price quickly becomes negative one month after reaching the OOP maximum

and remains negative thereafter. However, the health shock effect is positive up

to 8 months after the individual is hospitalized. The direction of the health shock

effect goes in line with the intuition that individuals with poor health tend to be

less price sensitive. But, the reduction in the zero-price effect and the fact that it
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becomes negative, is irreconcilable with health care demand being perfectly inelastic

after consumers reach their OOP maximum. This suggests that factors other than

consumers’ OOP prices may explain why health care demand responds to cost-sharing.

I delve into these factors in the next subsection.

4.4 Dynamic incentives

After reaching the OOP maximum, consumers face zero prices because their coinsur-

ance rate drops to zero. If consumers were forward-looking and faced no information

frictions (such that they know exactly what their OOP prices are at every point in

time), they would either consume more health care services or more expensive ser-

vices after the event than before the event. Cumulative spending can also increase

over time after reaching the OOP maximum if consumers foresee that prices will be

non-zero at the start of the next calendar year when cost-sharing resets. This is ap-

parent from panel A of figure 1 which shows that cumulative spending ramps up after

reaching the OOP maximum, in the last three months of the year.

However, when compared to individuals who do not reach the OOP maximum in

an event study specification, the zero-price effect in the left panel of figure 6 is at odds

with these behavioral assumptions about consumers when they face zero prices. The

reduction in the zero-price effect is consistent with insurers steering patients towards

cheaper providers and with gatekeeping incentives being stronger among the group

of patients who reach the OOP maximum. Nonetheless, the finding is also consistent

with patients facing information frictions. If consumers are uncertain about whether

they have reached their OOP maximum, they might behave as if they face non-zero

prices after the event. If this type of information friction disappears over time, then we

should see consumers either making more expensive claims or claiming more services
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the further they are from having reached their OOP maximum and the closer they

are to the end of the calendar year.

Figure 7: Utilization and spending by cohort

(a) Mean claim price
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(b) Any claim

-.6

-.4

-.2

0

.2

A
ve

ra
ge

 e
ffe

ct

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Months to reaching OOP max

Month 4 Month 7 Month 9

Note: Coefficients and 95 percent confidence intervals of the event study specifications following equation (2) for
mean claim price in panel A and an indicator of making claims in panel B conditional on treated individuals who
reach their OOP maximum in April (black), July (dark gray), and September (light gray). Regression uses Sun and
Abraham (2021)’s estimator. Treated individuals are those who reach their OOP maximum and control individuals
are those who do not reach their maximum. Time indicators relative to reaching the OOP maximum are set to −1
for the control group.

To get at the role of information frictions in explaining the spending and utilization

patterns in figure 2, I estimate separate event study specifications conditional on

treated individuals who reach the OOP maximum in different months of the year.

Appendix table 11 presents the set of event study coefficients.

Findings in figure 7 show that treated individuals consume significantly cheaper

services and are significantly less likely to make claims after reaching the OOP max-

imum regardless of when the event happens. Comparing across months, we see that

individuals who reach the OOP maximum in April consume relatively cheaper ser-

vices by the end of the calendar year relative to controls, and this reduction in the

mean claim price is similar in size for individuals who reach their maximum in July

and September. While the homogeneity of effects by treatment timing does not rule

out the presence of information frictions, the fact that treatment effects are negative

even for consumers who are treated in April suggests a role for insurer gatekeeping
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in explaining my results.

My findings are in contrast to Brot-Goldberg et al. (2017), who show no evidence

of consumers price-shopping or of consumers responding to the true shadow price of

care after they hit their deductible. Figures 2 and 7 indicate that health care demand

responds substantially to the shadow price of care after patients reach their OOP

maximum and that this response increases over time after the event potentially due

to insurer gatekeeping.

The magnitude of gatekeeping. The large declines in utilization and spending

after reaching the OOP maximum cannot alone be explained by changes in cost-

sharing. Around the OOP maximum and for a low-income consumer, insurers’ costs

increase 11.5 percent since it moves from covering 88.5 percent to 100 percent of

health care costs. Gatekeeping incentives are not likely to change discontinuously on

this (intensive) margin, but they are likely driven by changes in the consumer’s risk

type. If an individual reaches the OOP maximum, they are at risk of being very

expensive to the insurer. It is this change in risk (extensive margin) to which insurers

respond by restricting the number and the type of services that their enrollees claim.

Although the event study analyses identify insurer gatekeeping and consumer in-

formation frictions as sources of price sensitivity, they do not speak to the mechanisms

by which insurers gatekeep their enrollees, which has been the focus of other recent

papers (e.g., Brot-Goldberg et al., 2023; Shi, 2024; League, 2023). Given that insurers

in Colombia cannot design their cost-sharing rules nor premiums, they can engage

in steering through non-price mechanisms such as claim denials, providing access

to narrow hospital networks, or requiring prior authorization for certain services or

providers.
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4.5 Health Outcomes

A few papers in the health economics literature have found evidence of a causal

effect of cost-sharing on individual mortality. Chandra et al. (2021) show for example

that $100 reductions in patient drug budgets among the elderly increases mortality

by 13.5 percent. Buitrago et al. (2021) find that mortality increases 0.8 per 1,000

enrollees after a three-fold increase in copayments using data from the Colombian

health care system. Because insurer gatekeeping may potentially involve the provision

of inadequate care and has similar effects on health care demand as cost-sharing, in

this subsection I study the impact of gatekeeping on individual mortality.

My empirical approach is a regression discontinuity design (RD). I do not use a

did specification because, by definition, the outcome does not vary before the event

for treated individuals. Let yit be an indicator for whether individual i dies in month

t; Sit be the individual’s relative OOP spending (cumulative OOP spending minus

OOP maximum) in month t; and Tit = 1{Si − oopi ≥ 0} be an indicator for whether

the individual reaches her OOP maximum denoted by oopi in month t. I estimate the

following regression in binned data based on 30 bins of Sit and for Sit ∈ [−100, 100]

thousand pesos:

yit = αTit + γSit + βTit × Sit + εit (3)

Appendix 4 presents tests of the RD assumptions. For instance, appendix figure

4 shows that the distribution of relative OOP spending is smooth around zero, which

suggests potentially no manipulation of the running variable; and appendix figure 5

presents RD plots for covariate smoothness around the cutoff.5

Results of equation (3) are presented in figure 8. The main takeaway is that
5Although I find a discontinuity in the fraction of low-income individuals, this should lead to

lower mortality rates after reaching the OOP maximum.
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Figure 8: Individual mortality
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Note: Regression discontinuity plot for individual mortality in the full sample. Linear regressions are estimated on
30 bins of OOP spending relative to the OOP maximum. Black dots correspond to average mortality in the bin, solid
blue lines represent a linear fit, and dashed blue lines represent 95 percent confidence intervals.

individual mortality does not change around the cutoff. While the null effect seems

to counter results in Buitrago et al. (2021), in my case it speaks to discontinuities

in relative OOP spending rather than in copayments as in the authors’ case. Both

sets of results do align with the notion that consumers are myopic and therefore that

they care about the spot price of health care when making health care consumption

decisions.

5 Cost of Gatekeeping and Information Frictions

The reduced-form findings of the previous sections provide evidence that insurer gate-

keeping affects the price sensitivity of health care demand and impacts consumers’

decisions of which providers to visit. An important caveat of such analysis is that it

cannot speak to what would health care consumption or access to care be in absence

of gatekeeping given that it cannot completely disentangle the relative magnitude of

gatekeeping and information frictions. In this section I develop a structural model of

demand for hospitals to answer this question.

Suppose consumer i of type θ lives in municipality m and is enrolled with insurer
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j. Consumer types are defined by a combination of sex and five-year age group. The

consumer chooses a hospital h in the network of her insurer based on the indirect

utility in two states of the world, before and after reaching the OOP maximum:

uijhm =

 (αi + σαωi)ripjh + τ
∑

l∈m qθldlh + ξh + εijhm if ci + νi ≤ oopi

(βi + σβωi)pjh + τ
∑

l∈m qθldlh + ξh + eijhm o.w
(4)

In this utility function, pjh is the price that insurer j pays at hospital h for an ad-

mission and ri is the coinsurance rate. The probability that a consumer type θ lives

in locality l within municipality m is given by qθl and equals the population density

of this type of consumer at each locality. dlh is the distance from locality l’s centroid

to hospital h. Price coefficients are given by αi = x′
iα, βi = x′

iβ, where xi is a vector

of consumer demographics (dummies for sex and age group), diagnoses (indicator for

having a chronic disease), and an intercept. Moreover, ωi ∼ N(0, 1) captures unob-

served heterogeneity in price sensitivity across consumers with dispersion parameters

given by σα and σβ in each state of the world. Finally, ξh is a hospital fixed effect

representing shared preferences for hospital h across consumers.

States of the world differ on the source of responsiveness to prices. Before reaching

the OOP maximum, the consumer responds to prices up to the coinsurance rate. After

reaching the OOP maximum, the insurer responds to prices due to gatekeeping since

it covers the full cost of care. I specify the probability of staying below the OOP

maximum as

γi = E[1{ci + νi ≤ oopi}]

where, ci is the OOP cost of consumer i up to but not including the hospital admis-

sion and oopi is the OOP maximum. Price sensitivity in both states of the world

depend also on the magnitude of information frictions. These frictions may arise
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either because the consumer does not know the true shadow price of health care or

because insurer j is uncertain about the patient’s total OOP costs. I capture the im-

pact of these information frictions on the probability of each state of world through

νi ∼ N(0, σ2
ν). This parameterization implies that

γi = Φ
(oopi − ci

σν

)

I further assume that νi, ωi, εijhm, and eijhm are independent of each other, and

that εijhm and eijhm follow a type-I extreme value distribution. I set σα = σβ ≡ σp

to account for the fact that I can only separately identify one dispersion parameter

on unobserved preference heterogeneity from the parameter on information frictions.

This is a sensible restriction given that we can expect insurers to impact consumer

choices only based on observable patient characteristics but not on their unobserv-

ables.

Because I do not observe the patients’ residence address but only their municipal-

ity of residence, I complement my enrollment and claims data with information on

the distribution of population density by age across localities within a municipality.

This information comes from the 2018 census. I limit my analysis to the 13 main

municipalities in the country, for which locality-level information exists. These mu-

nicipalities have on average 14 localities, each with an average area of 128 squared

kilometers. The third term on the right side of equation (4) therefore captures the

expected distance to each hospital from each census tract conditional on the patient’s

age and municipality of residence.

Appendix 5 describes this census data by reporting maps of the 4 largest munici-

palities in my sample with their localities and hospital geolocations. In this appendix

I also explain my methodology for obtaining negotiated admission prices since prices
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observed in the claims data may sometimes vary with admission characteristics that

are unobserved when insurers and hospitals negotiate.

Given the distribution of the preference shocks, the log likelihood function is:

L =
∑
i

(
γi log

( ∏
h∈Hj

P 1
yijhm

ijhm

)
+ (1− γi) log

( ∏
h∈Hj

P 2
yijhm

ijhm

))

where

P s
ijhm =

∫
exp(δsijhm)∑
k exp(δ

s
ijkm)

ϕ(ω) for s = {1, 2} (5)

and

δ1ijkm = (αi + σpωi)ripjh + τ
∑
l∈m

qθldlh + ξh

δ2ijkm = (βi + σpωi)pjh + τ
∑
l∈m

qθldlh + ξh

Identification. To separately identify the coefficients associated with admission

prices in the two states of world, αi and βi, I use the discontinuity in coinsurance

rates introduced by the OOP maximum. Before reaching this maximum, consumers

face prices up to the coinsurance rate, but afterwards out-of-pocket prices are zero

and demand responds to prices only to the extent that insurers cover the full price of

the admission. Price variation within hospital and coinsurance rate variation across

patients are therefore needed to identify the price coefficients in each state of the

world. While it is reasonable to think that consumers who reach their OOP maximum

may differ in unobserved ways from those who don’t, event study results from the

previous sections provide evidence of limited selection bias of this style.

The unobserved preference heterogeneity parameter σp is identified from obser-

vationally identical patients that have not reached their OOP maximum but choose
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different hospitals. Finally, the impact of information frictions captured by σν is iden-

tified from comparing the choices made by patients who reach their OOP maximum

and are observationally identical except for their OOP costs prior to the admission.

Estimates. I estimate the hospital demand model using simulated maximum

likelihood to approximate the integrals in equation (5). Results are presented in table

3. Consistent with the reduced form evidence I find that hospital demand responds

to prices before and after consumers reach their OOP maximum. Before reaching this

maximum, a 10,000 pesos increase in OOP prices reduces the probability of choosing

a hospital by 8.54 percent. After reaching the maximum, a 10,000 pesos increase in

admission prices reduces the choice probability by 0.57 percent.

Because OOP prices are zero after patients reach their OOP maximum, price

sensitivity in this state of the world can be explained by insurer gatekeeping. Reas-

suringly, the price coefficient is smaller in magnitude than the OOP price coefficient,

because the former captures only a change in gatekeeping incentives from covering

88.5 to 100 percent of an (low-income) individual’s health care cost, but it does not

capture the extensive margin effect of gatekeeping.

Interactions of prices with consumer demographics and diagnoses are in line with

intuition and previous literature (Ho, 2006). Patients with chronic diseases are sig-

nificantly less sensitive to OOP prices than patients without diagnoses. Gatekeeping

incentives are stronger among older individuals who are potentially more expensive to

the insurer. However, insurers are less likely to gatekeep claims from individuals with

chronic diseases compared to healthy individuals, consistent with findings in panel B

of figure 4. Price sensitivity in both states of the world is substantially heterogeneous

across consumers as seen in the estimate for σp. I find that patients dislike commut-

ing: if they have to travel one additional kilometer to visit a hospital, the probability

of choosing this hospital decreases by 26.5 percent. Moreover, there is no evidence of
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Table 3: Hospital demand estimates

coef se

OOP price -8.535 (0.287)
Price -0.574 (0.019)
Distance -0.267 (0.003)
σp 0.234 (0.171)
σν 0.003 (0.0009)

Interactions

OOP price Male 2.033 (0.140)
Age 10-19 -2.407 (0.578)
Age 20-29 2.035 (0.255)
Age 30-39 0.848 (0.072)
Age 40-49 -0.361 (0.118)
Age 50-59 -1.356 (0.075)
Age 60-69 1.045 (0.102)
Age 70 or older (ref)
Sick 6.960 (0.489)

Price Male 0.421 (0.031)
Age 10-19 0.360 (0.166)
Age 20-29 0.349 (0.073)
Age 30-39 0.026 (0.008)
Age 40-49 0.422 (0.076)
Age 50-59 0.360 (0.070)
Age 60-69 0.202 (0.062)
Age 70 or older (ref)
Sick 0.725 (0.024)

Observations 596,130

Note: Table shows simulated maximum likelihood estimates of hospital demand model. Prices are measured in
millions of COP. Distance is measured in kilometers. Includes hospital fixed effects. Bootstrap standard errors in
parenthesis based on 80 resamples.

information frictions as seen by the estimate of σν , which goes in line with findings

in the model-free section.

6 Partial Equilibrium Analysis

Using my model estimates I conduct two partial equilibrium analyses that reveal

the relative importance of gatekeeping and information frictions on access to care.
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First, to quantify the extensive margin effect of gatekeeping on commuting I set

βi = σp = 0. Second, to quantify the impact of information frictions, I set σν = 0.

In each scenario, I recompute individuals’ choice probabilities and present summary

statistics of monetized marginal effects of distance. I specify the monetized marginal

effect of distance as:

1

Njh

∑
im

[
γijhm

( 1

αi

∂P 1
ijhm

∂
∑

l∈m qθldlh

)
+ (1− γijhm)

( 1

αi

∂P 2
ijhm

∂
∑

l∈m qθldlh

)]

where Njh is the number of patients that have hospital h in their choice set with

insurer j. This effect can be interpreted as the average patient’s willingness-to-pay

to reduce commuting distance to hospital h by 1 kilometer.

My results correspond to a partial equilibrium because I assume that admission

prices do not change as a result of banning gatekeeping practices or eliminating in-

formation frictions. A full counterfactual analysis would require a pricing model such

as Nash-in-Nash bargaining to predict prices under each policy and is left for future

research.

Table 4: Monetized marginal effect of distance

p25 median mean p75

Observed -4,231 -2,681 -2,427 -1,517
No gatekeeping -4,208 -2,692 -2,915 -1,495
No information frictions -4,231 -2,681 -2,427 -1,517

Note: Table shows the mean, median, 25th, and 75th percentiles of the distribution of monetized marginal effect of
distance in the observed scenario, the exercise without gatekeeping setting βi = σβ = 0, and the exercise without
information frictions setting σν = 0. In each scenario I drop observations with values above the 99th percentile and
below the 1st percentile. Values are measured in 2011 COP.

Table 4 presents the mean, median, and 25th and 75th percentiles of the dis-

tribution of monetized marginal effect of distance under the observed scenario and

the exercises without gatekeeping and without information frictions. Note that if it

weren’t for gatekeeping, consumers would choose hospitals only based on distance and
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quality when they reach their OOP maximum. Consistent with this intuition, I find

that without gatekeeping the average consumer would be willing to pay 20 percent

more to reduce commuting distance by 1 kilometer relative to the observed scenario.

To put these estimates in perspective, the price of a bus ticket in Bogotá during

2011 was 1,700 pesos (for a Transmilenio bus ride), hence gatekeeping induces the

average individual to pay 342 additional pesos to visit a hospital. If patients pay

1,700 pesos to commute the average distance in my data (8.96 kilometers), then my

partial equilibrium findings also suggest that gatekeeping forces the average consumer

to travel 1.8 additional kilometers to visit a hospital. Unlike gatekeeping, information

frictions have no effects effects on commuting distance. This finding goes in line with

the model-free evidence that pointed to gatekeeping rather than information as the

main source of choice frictions for consumers.

Table 5: Heterogeneity in monetized marginal effect of distance

Observed No gatekeeping No information
frictions

Panel A
Aged 65 or older -2,357 -2,244 -2,920
Aged less that 65 -2,920 -2,956 -2,919

Panel B
Chronic disease -923 -1,023 -922
Healthy -2,342 -2,808 -2,341

Note: Table shows the mean of the distribution of monetized marginal effect of distance across individuals aged
less than 65, aged 65 or older, with a chronic disease, and without diseases. Column (1) presents results for the
observed scenario, column (2) for the exercise without gatekeeping setting βi = σβ = 0, and column (3) for the
exercise without information frictions setting σν = 0. In each scenario I drop observations with values above the
99th percentile and below the 1st percentile. Values are measured in 2011 COP.

In table 5 I explore the heterogeneity of results across age and health status. Panel

A shows that for patients aged less than 65 the impact of gatekeeping is larger than for

patients aged 65 or older. Without gatekeeping, younger individuals would be willing

to pay 1 percent more than in the observed scenario to reduce commuting distance

to hospitals by 1 kilometer, however patients aged 65 or older would be willing to
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pay 5 percent less. Panel B shows that gatekeeping induces individuals with chronic

conditions and healthy consumers to travel 1 and 1.8 additional kilometers relative to

the observed scenario, respectively. This result potentially reflects insurers’ reduced

incentives to gatekeep sick patients relative to healthy ones.

Figure 9: Changes in demand

(a) Hospital demand fixed effects
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Note: Panel A presents a linear relation between percentage change in demand for every hospital and hospital demand
fixed effect. Panel B presents a linear relation between percentage change in demand for every hospital and hospital
mortality rate. Both panels use the subsample of patients with chronic diseases. Blue lines correspond to changes
in the scenario without gatekeeping relative to the observed scenario, and yellow lines correspond to changes in the
scenario without information frictions relative to the observed scenario.

The partial equilibrium analysis reveals that patients would have chosen hospitals

that are closer to them on average if it weren’t for gatekeeping. What would have

health outcomes looked like if consumers had visited these closer hospitals? To pro-

vide descriptive evidence towards answering this question, I calculate the correlation

between predicted change in hospital demand and measures of hospital quality such as

estimated hospital demand fixed effects and hospital mortality rates for the subsam-

ple of patients with chronic diseases.6 Figure 9 presents these correlations, blue lines

depict the scenario without gatekeeping and yellow lines the scenario without infor-
6To calculate the hospital mortality rate, I estimate the following regression: yih = x′

iβ+ξh+εih,
where yih is an indicator for whether individual i died at hospital h during 2011; xi is a vector of
patient characteristics including sex, dummies for 10-year age categories, an indicator for whether
the individual has a chronic disease, and dummies for income group; and ξh is a hospital fixed effect.
The residual mortality rate is ξ̂h.
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mation frictions. The figure shows a higher quality gradient in the scenario without

gatekeeping than without information frictions. Without gatekeeping demand from

patients with chronic conditions is reallocated towards higher-quality hospitals based

on these measures.

7 Conclusions

In this paper I show that health insurers shape the way in which health care is

provided to patients by engaging in gatekeeping practices. Gatekeeping has stronger

effects on health care utilization and spending compared to demand-side cost-sharing,

which provides an argument in favor of health systems that provide free health in-

surance through private insurers. To identify the impact of gatekeeping, I leverage

the discontinuity in coinsurance rates introduced by the out-of-pocket (OOP) maxi-

mum. I use data from the Colombian health care system where cost-sharing rules are

determined by the government and standardized across insurers and hospitals.

I show that patients in my setting reach their OOP maximum as-if-randomly.

Those who reach their maximum consume significantly cheaper services and are sub-

stantially less likely to make claims afterwards. These results are at odds with be-

havioral assumptions about consumers when they face zero prices and are in favor

of gatekeeping and information frictions driving consumer choices. Estimates from

a structural model of hospital demand show that gatekeeping induces patients on

average to travel 1.8 additional kilometers to receive care. Finally, I find no impact

of gatekeeping on patient health outcomes such as mortality.

In the discussion of how best to deliver health insurance coverage, these findings

suggest a role for private insurers as buffers of patient moral hazard. However, recent

media attention to cases where gatekeeping has prevented patients from receiving
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adequate care for their chronic health conditions in the US, indicates that government

regulation of gatekeeping is needed.7
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Appendix 1 Additional descriptives

Appendix Figure 1: Most expensive types of claims
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Note: Figure shows the frequency of the top 6 most expensive types of services claimed by individuals who reach their
OOP maximum in the week prior to reaching this limit.
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Appendix Table 1: Claims-level difference-in-differences regression

Log price

(1) (2)

Treated×Post -0.075 -0.170
(0.002) (0.069)

Treated 0.202 0.407
(0.001) (0.100)

Fixed effects
Service Yes No
Municipality Yes No
Year Yes Yes
Month Yes Yes

Observations 8,658,716

Note: Table shows a regression of log price on an interaction between treatment (defined as reaching the OOP
maximum) and post-period indicator (for months after reaching the OOP maximum) controlling for service, mu-
nicipality, year, and calendar month fixed effects. Estimation uses claims-level data for my main analysis sample.
Standard errors in parenthesis are clustered at the service level. Columns (1) and (2) differ in the set of fixed effects.
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Appendix 2 Event Study Coefficients

In this appendix I present event study coefficients and standard errors used to con-

struct each figure in the main text. I also report additional event study results for

imaging and laboratory claims, as well as regression discontinuity graphs to test for

covariate smoothness around the OOP maximum related to my mortality analysis.

Appendix Table 2: Main Event Study Coefficients

Mean claim cost Any claim

coef se coef se

t-11 0.021 (0.007) -0.142 (0.014)
t-10 0.020 (0.006) -0.131 (0.010)
t-9 0.019 (0.005) -0.128 (0.008)
t-8 0.014 (0.005) -0.124 (0.007)
t-7 0.010 (0.005) -0.104 (0.006)
t-6 0.009 (0.004) -0.090 (0.006)
t-5 0.009 (0.004) -0.078 (0.005)
t-4 0.007 (0.003) -0.064 (0.005)
t-3 0.002 (0.003) -0.051 (0.004)
t-2 0.003 (0.002) -0.033 (0.004)
t-1 (ref) (ref) (ref) (ref)
t 0.587 (0.022) 0.188 (0.005)
t+1 -0.145 (0.023) -0.053 (0.007)
t+2 -0.173 (0.023) -0.124 (0.007)
t+3 -0.228 (0.027) -0.165 (0.008)
t+4 -0.239 (0.023) -0.205 (0.009)
t+5 -0.279 (0.032) -0.218 (0.010)
t+6 -0.309 (0.035) -0.240 (0.011)
t+7 -0.326 (0.037) -0.257 (0.013)
t+8 -0.389 (0.045) -0.272 (0.018)

Observations 7,200,000 7,200,000

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for the mean claim
cost and an indicator for making claims, using Sun and Abraham (2021)’s estimator. Treated individuals are those who reach
their OOP maximum and control individuals are those who do not reach their maximum. Time indicators relative to reaching the
OOP maximum are set to −1 for the control group.
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Appendix Table 3: Event Study Coefficients for Mean Claim Cost by Income Group

(1) High (2) Middle (3) Low

coef se coef se coef se

t-11 -0.124 (0.206) 0.083 (0.069) 0.027 (0.005)
t-10 0.058 (0.131) 0.020 (0.057) 0.027 (0.005)
t-9 0.049 (0.116) 0.046 (0.054) 0.024 (0.004)
t-8 0.033 (0.126) 0.045 (0.049) 0.019 (0.004)
t-7 0.019 (0.102) 0.039 (0.045) 0.014 (0.004)
t-6 -0.033 (0.081) 0.048 (0.043) 0.013 (0.003)
t-5 0.030 (0.080) 0.051 (0.040) 0.010 (0.003)
t-4 0.016 (0.089) 0.036 (0.034) 0.008 (0.003)
t-3 0.015 (0.070) 0.030 (0.029) 0.003 (0.002)
t-2 -0.017 (0.065) 0.035 (0.022) 0.002 (0.002)
t-1 (ref) (ref) (ref) (ref) (ref) (ref)
t 1.652 (0.344) 1.065 (0.186) 0.517 (0.017)
t+1 -0.800 (0.264) -0.552 (0.190) -0.137 (0.018)
t+2 -1.013 (0.266) -0.500 (0.193) -0.173 (0.018)
t+3 -1.004 (0.251) -0.749 (0.233) -0.216 (0.020)
t+4 -0.985 (0.271) -0.606 (0.160) -0.240 (0.022)
t+5 -1.138 (0.313) -0.901 (0.271) -0.262 (0.024)
t+6 -1.333 (0.363) -0.933 (0.310) -0.294 (0.026)
t+7 -1.575 (0.414) -1.055 (0.335) -0.302 (0.028)
t+8 -2.104 (0.532) -1.087 (0.369) -0.359 (0.033)

Observations 411,936 1,364,040 5,424,024

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for
mean claim cost conditional on individuals with incomes above 5 time the monthly minimum wage in column (1),
with incomes between 2 and 5 times the monthly minimum wage in column (2), and with incomes below 2 times the
monthly minimum wage in column (3). Estimation uses Sun and Abraham (2021)’s estimator. Treated individuals
are those who reach their OOP maximum and control individuals are those who do not reach their maximum. Time
indicators relative to reaching the OOP maximum are set to −1 for the control group.
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Appendix Table 4: Event Study Coefficients for Making Any Claim by Income Group

(1) High (2) Middle (3) Low

coef se coef se coef se

t-11 -0.218 (0.153) -0.165 (0.055) -0.134 (0.014)
t-10 -0.050 (0.107) -0.098 (0.037) -0.129 (0.010)
t-9 -0.057 (0.076) -0.143 (0.033) -0.124 (0.008)
t-8 -0.150 (0.075) -0.139 (0.028) -0.119 (0.007)
t-7 -0.076 (0.063) -0.118 (0.025) -0.100 (0.006)
t-6 -0.049 (0.058) -0.095 (0.022) -0.087 (0.006)
t-5 -0.026 (0.049) -0.045 (0.021) -0.078 (0.005)
t-4 -0.120 (0.049) -0.056 (0.019) -0.062 (0.005)
t-3 -0.056 (0.042) -0.056 (0.017) -0.049 (0.005)
t-2 -0.028 (0.036) -0.037 (0.016) -0.032 (0.004)
t-1 (ref) (ref) (ref) (ref) (ref) (ref)
t -0.189 (0.066) 0.027 (0.030) 0.188 (0.006)
t+1 -0.363 (0.075) -0.179 (0.035) -0.059 (0.008)
t+2 -0.487 (0.087) -0.256 (0.035) -0.130 (0.009)
t+3 -0.493 (0.097) -0.278 (0.039) -0.174 (0.009)
t+4 -0.561 (0.107) -0.372 (0.042) -0.211 (0.010)
t+5 -0.563 (0.120) -0.376 (0.042) -0.227 (0.012)
t+6 -0.777 (0.135) -0.429 (0.049) -0.246 (0.013)
t+7 -0.794 (0.156) -0.446 (0.064) -0.264 (0.015)
t+8 -1.090 (0.210) -0.510 (0.077) -0.272 (0.019)

Observations 411,936 1,364,040 5,424,024

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for
making any claim conditional on individuals with incomes above 5 time the monthly minimum wage in column (1),
with incomes between 2 and 5 times the monthly minimum wage in column (2), and with incomes below 2 times the
monthly minimum wage in column (3). Estimation uses Sun and Abraham (2021)’s estimator. Treated individuals
are those who reach their OOP maximum and control individuals are those who do not reach their maximum. Time
indicators relative to reaching the OOP maximum are set to −1 for the control group.
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Appendix Table 5: Event Study Coefficients by Health Status

Mean claim cost Any claim

(1) Healthy (2) Sick (3) Healthy (4) Sick

coef se coef se coef se coef se

t-11 0.031 (0.018) 0.016 (0.007) -0.190 (0.039) -0.133 (0.015)
t-10 0.004 (0.011) 0.020 (0.006) -0.225 (0.026) -0.114 (0.010)
t-9 0.015 (0.011) 0.018 (0.006) -0.218 (0.022) -0.113 (0.008)
t-8 0.010 (0.009) 0.013 (0.005) -0.192 (0.019) -0.111 (0.007)
t-7 0.000 (0.009) 0.010 (0.005) -0.142 (0.017) -0.097 (0.006)
t-6 -0.002 (0.008) 0.010 (0.004) -0.108 (0.016) -0.087 (0.006)
t-5 -0.001 (0.008) 0.009 (0.004) -0.109 (0.014) -0.072 (0.005)
t-4 0.002 (0.007) 0.007 (0.004) -0.081 (0.013) -0.060 (0.005)
t-3 0.000 (0.007) 0.003 (0.003) -0.077 (0.012) -0.046 (0.005)
t-2 0.000 (0.006) 0.003 (0.003) -0.044 (0.011) -0.031 (0.004)
t-1 (ref) (ref) (ref) (ref) (ref) (ref) (ref) (ref)
t 0.665 (0.042) 0.572 (0.025) 0.153 (0.018) 0.190 (0.005)
t+1 -0.179 (0.038) -0.141 (0.025) -0.242 (0.022) -0.025 (0.006)
t+2 -0.243 (0.038) -0.163 (0.025) -0.362 (0.024) -0.085 (0.007)
t+3 -0.262 (0.038) -0.223 (0.030) -0.449 (0.027) -0.118 (0.008)
t+4 -0.274 (0.040) -0.233 (0.026) -0.471 (0.029) -0.159 (0.009)
t+5 -0.270 (0.041) -0.280 (0.036) -0.488 (0.032) -0.170 (0.010)
t+6 -0.290 (0.043) -0.310 (0.040) -0.521 (0.036) -0.187 (0.011)
t+7 -0.257 (0.045) -0.334 (0.043) -0.528 (0.041) -0.202 (0.013)
t+8 -0.274 (0.053) -0.404 (0.052) -0.520 (0.054) -0.213 (0.018)

Observations 3,576,708 3,623,292 3,576,708 3,623,292

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for
mean claim cost and an indicator for making claims conditional on individuals without diagnoses in columns (1)
and (3) and conditional on individuals with chronic diseases in columns (2) and (4). Estimation uses Sun and
Abraham (2021)’s estimator. Treated individuals are those who reach their OOP maximum and control individuals
are those who do not reach their maximum. Time indicators relative to reaching the OOP maximum are set to −1
for the control group.
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Appendix Table 6: Event Study Coefficients for Log Cost by Service Category

Prescriptions Outpatient Inpatient

coef se coef se coef se

t-11 -0.001 (0.001) -0.048 (0.005) 0.001 (0.005)
t-10 -0.002 (0.001) -0.046 (0.004) -0.007 (0.004)
t-9 -0.001 (0.001) -0.044 (0.003) -0.009 (0.003)
t-8 -0.001 (0.001) -0.044 (0.003) -0.013 (0.003)
t-7 -0.002 (0.001) -0.044 (0.003) -0.016 (0.003)
t-6 -0.003 (0.001) -0.038 (0.002) -0.019 (0.003)
t-5 -0.003 (0.001) -0.036 (0.002) -0.019 (0.002)
t-4 -0.002 (0.001) -0.030 (0.002) -0.019 (0.002)
t-3 -0.002 (0.001) -0.024 (0.002) -0.020 (0.002)
t-2 -0.002 (0.001) -0.012 (0.002) -0.017 (0.002)
t-1 (ref) (ref) (ref) (ref) (ref) (ref)
t 0.102 (0.003) 0.307 (0.005) 0.719 (0.008)
t+1 -0.007 (0.002) -0.035 (0.004) -0.062 (0.006)
t+2 -0.013 (0.002) -0.055 (0.004) -0.122 (0.006)
t+3 -0.018 (0.002) -0.070 (0.005) -0.145 (0.006)
t+4 -0.026 (0.003) -0.085 (0.005) -0.166 (0.007)
t+5 -0.025 (0.003) -0.091 (0.006) -0.184 (0.007)
t+6 -0.034 (0.003) -0.106 (0.006) -0.213 (0.008)
t+7 -0.041 (0.004) -0.109 (0.008) -0.229 (0.010)
t+8 -0.042 (0.006) -0.126 (0.011) -0.254 (0.013)

Observations 7,200,000 7,200,000 7,200,000

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for log
total spending in prescriptions in column (1), outpatient services in column (2), and inpatient services in column
(3). Estimation uses Sun and Abraham (2021)’s estimator. Treated individuals are those who reach their OOP
maximum and control individuals are those who do not reach their maximum. Time indicators relative to reaching
the OOP maximum are set to −1 for the control group.
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Appendix Table 7: Event Study Coefficients for Making Any Claim by Service Category

Prescriptions Outpatient Inpatient

coef se coef se coef se

t-11 -0.041 (0.009) -0.135 (0.014) -0.029 (0.008)
t-10 -0.050 (0.006) -0.118 (0.010) -0.041 (0.006)
t-9 -0.042 (0.005) -0.116 (0.008) -0.042 (0.005)
t-8 -0.044 (0.004) -0.110 (0.007) -0.053 (0.004)
t-7 -0.040 (0.004) -0.093 (0.006) -0.050 (0.004)
t-6 -0.039 (0.004) -0.074 (0.006) -0.050 (0.004)
t-5 -0.036 (0.003) -0.066 (0.005) -0.050 (0.004)
t-4 -0.030 (0.003) -0.054 (0.005) -0.044 (0.003)
t-3 -0.027 (0.003) -0.041 (0.004) -0.039 (0.003)
t-2 -0.021 (0.003) -0.024 (0.004) -0.032 (0.003)
t-1 (ref) (ref) (ref) (ref) (ref) (ref)
t 0.142 (0.004) 0.125 (0.005) 0.435 (0.005)
t+1 -0.019 (0.004) -0.043 (0.006) -0.046 (0.005)
t+2 -0.050 (0.004) -0.098 (0.007) -0.110 (0.005)
t+3 -0.055 (0.005) -0.138 (0.008) -0.128 (0.005)
t+4 -0.065 (0.005) -0.175 (0.009) -0.143 (0.006)
t+5 -0.064 (0.006) -0.185 (0.009) -0.157 (0.006)
t+6 -0.076 (0.007) -0.209 (0.011) -0.175 (0.008)
t+7 -0.089 (0.008) -0.225 (0.013) -0.180 (0.009)
t+8 -0.104 (0.011) -0.242 (0.017) -0.198 (0.012)

Observations 7,200,000 7,200,000 7,200,000

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for
making any prescription claims in column (1), outpatient claims in column (2), and inpatient claims in column
(3). Estimation uses Sun and Abraham (2021)’s estimator. Treated individuals are those who reach their OOP
maximum and control individuals are those who do not reach their maximum. Time indicators relative to reaching
the OOP maximum are set to −1 for the control group.
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Appendix Table 8: Event Study Coefficients for Laboratory and Imaging Services

Log cost + 1 Any claim

(1) Laboratory (2) Imaging (3) Laboratory (4) Imaging

coef se coef se coef se coef se

t-11 -0.005 (0.002) -0.015 (0.003) -0.103 (0.013) -0.071 (0.012)
t-10 -0.008 (0.001) -0.014 (0.002) -0.108 (0.009) -0.079 (0.008)
t-9 -0.008 (0.001) -0.013 (0.002) -0.108 (0.008) -0.086 (0.007)
t-8 -0.007 (0.001) -0.015 (0.001) -0.101 (0.007) -0.090 (0.006)
t-7 -0.006 (0.001) -0.015 (0.001) -0.086 (0.006) -0.073 (0.005)
t-6 -0.005 (0.001) -0.013 (0.001) -0.078 (0.005) -0.060 (0.005)
t-5 -0.005 (0.001) -0.012 (0.001) -0.075 (0.005) -0.055 (0.005)
t-4 -0.005 (0.001) -0.010 (0.001) -0.060 (0.005) -0.047 (0.005)
t-3 -0.004 (0.001) -0.008 (0.001) -0.048 (0.005) -0.031 (0.004)
t-2 -0.003 (0.001) -0.007 (0.001) -0.030 (0.005) -0.025 (0.004)
t-1 (ref) (ref) (ref) (ref) (ref) (ref) (ref) (ref)
t 0.057 (0.002) 0.103 (0.002) 0.163 (0.006) 0.199 (0.005)
t+1 -0.014 (0.001) -0.021 (0.001) -0.084 (0.006) -0.078 (0.005)
t+2 -0.020 (0.001) -0.030 (0.002) -0.116 (0.006) -0.117 (0.006)
t+3 -0.022 (0.001) -0.033 (0.002) -0.127 (0.007) -0.124 (0.006)
t+4 -0.026 (0.002) -0.035 (0.002) -0.148 (0.007) -0.134 (0.007)
t+5 -0.028 (0.002) -0.038 (0.002) -0.159 (0.008) -0.157 (0.007)
t+6 -0.034 (0.002) -0.042 (0.002) -0.193 (0.009) -0.167 (0.008)
t+7 -0.034 (0.002) -0.045 (0.003) -0.178 (0.011) -0.174 (0.010)
t+8 -0.038 (0.003) -0.047 (0.004) -0.219 (0.015) -0.171 (0.014)

Observations 7,200,000 7,200,000 7,200,000 7,200,000

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for log
total spending and an indicator for making claims in laboratory services and imaging services. Estimation uses Sun and
Abraham (2021)’s estimator. Treated individuals are those who reach their OOP maximum and control individuals
are those who do not reach their maximum. Time indicators relative to reaching the OOP maximum are set to −1 for
the control group.
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Appendix Table 9: Event Study Coefficients Excluding Deaths

Mean claim cost Any claim

coef se coef se

t-11 0.015 (0.007) -0.127 (0.016)
t-10 0.010 (0.006) -0.122 (0.012)
t-9 0.010 (0.005) -0.118 (0.009)
t-8 0.008 (0.005) -0.111 (0.008)
t-7 0.005 (0.005) -0.094 (0.007)
t-6 0.005 (0.004) -0.084 (0.007)
t-5 0.005 (0.004) -0.077 (0.006)
t-4 0.003 (0.003) -0.059 (0.006)
t-3 0.000 (0.003) -0.054 (0.005)
t-2 0.001 (0.003) -0.034 (0.005)
t-1 (ref) (ref) (ref) (ref)
t 0.467 (0.022) 0.183 (0.006)
t+1 -0.117 (0.019) -0.047 (0.007)
t+2 -0.133 (0.017) -0.115 (0.008)
t+3 -0.175 (0.024) -0.154 (0.009)
t+4 -0.203 (0.026) -0.196 (0.010)
t+5 -0.219 (0.028) -0.206 (0.011)
t+6 -0.240 (0.031) -0.236 (0.013)
t+7 -0.255 (0.033) -0.256 (0.015)
t+8 -0.295 (0.040) -0.275 (0.021)

Observations 4,796,616 4,796,616

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for mean
claim cost and an indicator for making claims excluding individuals who die during the sample period. Regression
uses Sun and Abraham (2021)’s estimator. Treated individuals are those who reach their OOP maximum and control
individuals are those who do not reach their maximum. Time indicators relative to reaching the OOP maximum are
set to −1 for the control group.
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Appendix Table 10: Zero-price and Health Shock Effects Event Study Coefficients

Zero-price Health Shock

coef se coef se

t-11 0.064 (0.013) -0.018 (0.005)
t-10 0.061 (0.011) -0.016 (0.005)
t-9 0.062 (0.010) -0.017 (0.004)
t-8 0.048 (0.009) -0.015 (0.003)
t-7 0.040 (0.009) -0.016 (0.003)
t-6 0.040 (0.008) -0.016 (0.003)
t-5 0.037 (0.008) -0.016 (0.002)
t-4 0.028 (0.007) -0.014 (0.002)
t-3 0.019 (0.006) -0.014 (0.002)
t-2 0.014 (0.005) -0.009 (0.002)
t-1 (ref) (ref) (ref) (ref)
t 0.721 (0.030) 0.701 (0.025)
t+1 -0.196 (0.027) 0.070 (0.012)
t+2 -0.228 (0.024) 0.039 (0.008)
t+3 -0.305 (0.034) 0.026 (0.006)
t+4 -0.347 (0.039) 0.023 (0.007)
t+5 -0.397 (0.044) 0.022 (0.009)
t+6 -0.448 (0.051) 0.022 (0.014)
t+7 -0.491 (0.052) 0.029 (0.013)
t+8 -0.600 (0.069) 0.022 (0.011)

Observations 6,818,472 91,428

Note: Coefficients and standard errors in parenthesis of the event study specifications for the mean claim cost due
to the zero-price effect and due to the health shock effect. The zero-price effect uses the sample of individuals who
are never hospitalized during the sample period. The health shock effect uses the sample of treated individuals.
Estimation uses Sun and Abraham (2021)’s estimator. Time indicators are constructed relative to reaching the OOP
maximum for the zero-price effect and are relative to the month when the individual is hospitalized for the health
shock effect.
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Appendix Table 11: Event Study Coefficients by Cohort

Mean claim cost Any claim

(1) Month 4 (2) Month 7 (3) Month 9 (4) Month 4 (5) Month 7 (6) Month 9

t-8 — — 0.007 — — -0.094
(0.007) (0.014)

t-7 — — 0.004 — — -0.081
(0.006) (0.014)

t-6 — 0.007 -0.002 — -0.034 -0.074
(0.007) (0.006) (0.016) (0.014)

t-5 — 0.004 0.001 — -0.037 -0.063
(0.007) (0.006) (0.015) (0.014)

t-4 — 0.002 0.001 — -0.033 -0.054
(0.006) (0.006) (0.014) (0.013)

t-3 0.002 -0.004 -0.006 -0.004 -0.027 -0.056
(0.010) (0.006) (0.005) (0.014) (0.013) (0.013)

t-2 0.004 0.010 -0.005 -0.011 -0.023 -0.038
(0.010) (0.007) (0.005) (0.013) (0.012) (0.012)

t-1 (ref) (ref) (ref) (ref) (ref) (ref)
t 0.870 0.595 0.552 0.021 0.034 -0.031

(0.067) (0.060) (0.046) (0.023) (0.022) (0.015)
t+1 -0.001 -0.113 -0.136 -0.264 -0.231 -0.287

(0.047) (0.026) (0.021) (0.026) (0.026) (0.018)
t+2 -0.134 -0.116 -0.153 -0.343 -0.295 -0.377

(0.023) (0.028) (0.016) (0.028) (0.028) (0.019)
t+3 -0.179 -0.155 -0.186 -0.409 -0.360 -0.419

(0.021) (0.029) (0.026) (0.030) (0.031) (0.020)
t+4 -0.187 -0.181 — -0.459 -0.402 —

(0.023) (0.030) (0.032) (0.030)
t+5 -0.198 -0.184 — -0.495 -0.444 —

(0.024) (0.032) (0.033) (0.032)
t+6 -0.230 — — -0.541 — —

(0.020) (0.033)
t+7 -0.247 — — -0.562 — —

(0.025) (0.034)
t+8 -0.266 — — -0.585 — —

(0.026) (0.036)

Observations 7,032,744 7,035,552 7,037,808 7,032,744 7,035,552 7,037,808

Note: Coefficients and standard errors in parenthesis of the event study specifications following equation (2) for mean
claim cost and an indicator for making claims conditional on treated individuals who reach their OOP maximum in
April in columns (1) and (4), July in columns (2) and (5), and September in columns (3) and (6). Estimation uses
Sun and Abraham (2021)’s estimator. Treated individuals are those who reach their OOP maximum and control
individuals are those who do not reach their maximum. Time indicators relative to reaching the OOP maximum
are set to −1 for the control group.
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Appendix Figure 2: Utilization and spending by health service

(a) Log imaging cost + 1
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(b) Any imaging claim
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(c) Log laboratory cost + 1
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(d) Any laboratory claim
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Note: Figure shows coefficients and 95 percent confidence intervals of the event study specifications following equation
(2) for the log of imaging cost in panel A, indicator for making imaging claims in panel B, log of laboratory cost in
panel C, and indicator for making laboratory claims in panel D. Regression uses Sun and Abraham (2021)’s estimator.
Treated individuals are those who reach their OOP maximum and control individuals are those who do not reach
their maximum. Time indicators relative to reaching the OOP maximum are set to −1 for the control group.
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Appendix 3 Robustness Checks

This appendix presents event study coefficients and 95 percent confidence intervals

for my main outcomes using Sun and Abraham (2021)’s estimator, two-way fixed

effects, and De Chaisemartin and d’Haultfoeuille (2020)’s estimator.

Appendix Figure 3: Utilization and spending after reaching the OOP limit

(a) Log total spending + 1
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(b) Log total claims + 1
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(c) Mean claim cost
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(d) Any claim
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Note: Figure shows coefficients and 95 percent confidence intervals of the event study specifications following equation
(2) for the log of total spending in panel A, log of total claims in panel B, mean claim cost in panel C, and an indicator
for making claims in panel D. Regression uses Sun and Abraham (2021)’s estimator in black, De Chaisemartin and
d’Haultfoeuille (2020)’s estimator in dark gray, and two-way fixed effects in light gray. Time indicators relative to
reaching the OOP maximum are set to −1 for the control group.
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Appendix 4 Regression Discontinuity Assumptions

Appendix Figure 4: Histogram of relative OOP spending
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Note: Histogram of OOP spending relative to the OOP maximum in the full sample.
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Appendix Figure 5: Regression discontinuity on demographics
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Note: Regression discontinuity plot using the full sample, on the fraction of males in top left panel, average age in
the top middle panel, fraction of individuals making less than 2 times the monthly minimum wage in the top right
panel, fraction of individuals with a chronic disease in the bottom left panel, fraction of individuals with cancer in
the bottom middle panel, and fraction of individuals with cardiovascular disease in the bottom right panel. Linear
regressions are estimated on vigintiles of OOP spending relative to the OOP maximum. Black dots correspond to
average outcome in the bin, solid blue lines represent a linear fit, and dashed blue lines represent 95 percent confidence
intervals.
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Appendix 5 Census Tract Data and Admission Prices

While the claims data reports admission prices that each insurer negotiated with

each hospital in its network, these prices sometimes vary with admission charac-

teristics that are unobserved to insurers when they bargain. To average out these

characteristics, I estimate the following regression separately for every insurer:

pcjh = λ1 + x′
cλ2 + λh + υcjh

where c is a claim, j is an insurer, and h is a hospital. Moreover, xc are claim

characteristics including patient’s sex, age, and length-of-stay; and λh are hospital

fixed effects. From these regressions I obtain price predictions p̂cjh, which I then

average across claims for every insurer-hospital pair to calculate the final prices used

in my model.

To construct my population-weighted distance measure I use data from the 2018

Colombian census. This data reports population density in each locality within a

municipality by age quintile. I limit my analysis sample to the 14 main capital cities

in the country. Appendix figure 6 presents the maps for the 4 largest municipalities

and their localities: Bogotá, Cali, Medellín, and Barranquilla. Darker colors represent

denser localities and red dots correspond to hospitals.
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Appendix Figure 6: Hospital locations and census tracts

(a) Bogotá (b) Cali

(c) Medellín (d) Barranquilla

Note: Census tract level maps for the main capital cities in Colombia using data from the 2018 census: Bogotá in
panel A, Cali in panel B, Medellín in panel C, and Barranquilla in panel D. Darker colors represent denser census
tracts in terms of population. Red dots correspond to hospitals.
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